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Abstract 

The median lethal dose for rodent oral acute toxicity (LD50) is a standard piece of information required to categorize 
chemicals in terms of the potential hazard posed to human health after acute exposure. The exclusive use of in vivo 
testing is limited by the time and costs required for performing experiments and by the need to sacrifice a number of 
animals. (Quantitative) structure–activity relationships [(Q)SAR] proved a valid alternative to reduce and assist in vivo 
assays for assessing acute toxicological hazard. In the framework of a new international collaborative project, the NTP 
Interagency Center for the Evaluation of Alternative Toxicological Methods and the U.S. Environmental Protection 
Agency’s National Center for Computational Toxicology compiled a large database of rat acute oral LD50 data, with 
the aim of supporting the development of new computational models for predicting five regulatory relevant acute 
toxicity endpoints. In this article, a series of regression and classification computational models were developed by 
employing different statistical and knowledge-based methodologies. External validation was performed to demon-
strate the real-life predictability of models. Integrated modeling was then applied to improve performance of single 
models. Statistical results confirmed the relevance of developed models in regulatory frameworks, and confirmed the 
effectiveness of integrated modeling. The best integrated strategies reached RMSEs lower than 0.50 and the best clas-
sification models reached balanced accuracies over 0.70 for multi-class and over 0.80 for binary endpoints. Computed 
predictions will be hosted on the EPA’s Chemistry Dashboard and made freely available to the scientific community.
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Introduction
Over the past 25  years, synthetic organic chemical pro-
duction world-wide has increased dramatically, from 
about 50 million tons to approximately 150 million tons 
[1]. This ever-growing increase of chemical substances 
represents a primary issue for the environment and 
human safety. Toxicological tests need to be performed 
to evaluate which of these chemicals are safe and which 
can potentially contaminate the environment and cause 
toxicity.

In the first stages of toxicological testing programs, 
acute toxicity studies are frequently used to categorize 

the agent in terms of the potential hazard posed to 
human health. Acute toxicity describes the adverse tox-
icological effects of a chemical that occur either from a 
single exposure  or from multiple exposures in a short 
period of time (usually less than 24 h) [2].

The median lethal dose (LD50) is the basis for the toxi-
cological classification of chemicals for various regula-
tions concerning chemical hazard [3, 4]. The acute LD50 
is the lethal dose of a substance that will kill 50% of the 
test animals/organisms within 24  h of exposure to the 
test substance [5–7]. Acute toxicity studies are conducted 
following various routes of exposure (e.g. oral, dermal 
and inhalation), and rodents are the most common ani-
mal model employed to estimate the lethal dose [8]. The 
estimation of rodent acute toxicity provides a baseline 
value when detailed toxicity data are unavailable for the 
chemical(s) of interest. In this case, LD50 values may be 
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employed to make a first assessment of relative toxicity 
among chemicals [6].

However, the exclusive use of in vivo testing has obvi-
ous limitations, related to the high monetary and time 
cost of performing such experiments, the need to sacri-
fice a number of animals, and the number of chemicals 
requiring assessment. Indeed, it has been reported that 
toxicological and other safety evaluations represent 8% of 
the total number of animals used for experimental pur-
poses in Europe, with rodents being the most commonly 
used specie [9, 10].

In light of this, recent laws are pushing the acceptance 
of alternative methods (e.g., in vitro and in silico meth-
ods) and their use by the regulatory and public health 
bodies in order to reduce the use of animals [11, 12]. 
Computational toxicology is a viable approach to reduce 
both the cost and the number of animals used for experi-
mental toxicity assessment [13].

Structure–activity relationship and quantitative struc-
ture–activity relationship [(Q)SAR] models are in silico 
approaches to determine the toxicity of a large number 
of chemicals by analyzing their chemical structure. These 
methods are increasingly used to fill the toxicological 
data gaps for high-production volume chemicals (e.g., 
pharmaceutical, agrochemical, food additives and indus-
trial) [3, 6, 14, 15] because they require a relatively small 
amount of resources and time.

Despite this, the reported number of (Q)SAR studies 
on mammalian toxicity is limited [3,  [9], with the major-
ity being restricted to particular classes of chemicals and 
based on small, focused datasets [16, 17, 18].

Recently, the NTP Interagency Center for the Evalua-
tion of Alternative Toxicological Methods (NICEATM) 
in collaboration with the U.S. Environmental Protec-
tion Agency (EPA) National Center for Computational 
Toxicology (NCCT) compiled a large list of rat acute oral 
LD50 data on ~ 12  k chemicals. These data have been 
made available to the scientific community, to serve as 
the basis for an international collaborative modeling 
initiative. The modeling initiative was launched by the 
Interagency Coordinating Committee on the Validation 
of Alternative Methods (ICCVAM) Acute Toxicity Work-
group with the aim to develop new computational mod-
els for predicting five specific acute oral systemic toxicity 
endpoints required for regulatory purposes [19].

These five endpoints of regulatory significance for 
acute oral toxicity included the identification of (1) 
“very toxic” chemicals (i.e., LD50 less than 50  mg/kg); 
(2) “non-toxic” chemicals (LD50 greater than or equal 
to 2000  mg/kg); (3) point estimates for rodent LD50; 
(4) categorization of toxicity hazard using the U.S. EPA 
classification scheme [20]; (5) categorization of toxicity 

hazard using the United Nations Globally Harmonized 
System of Classification and Labelling (GHS) classifica-
tion schemes (United Nations 2009).

The present article encompasses all the efforts that 
our research group contributed to this initiative. Both 
regression and classification computational models 
were developed for the five endpoints, by employing 
several statistical (i.e. QSAR) and knowledge-based (i.e. 
SAR) methods. External validation performance was 
provided to demonstrate the predictive capacity of the 
models. In the end, integrated modeling strategies were 
proposed to improve performance of single models. A 
multi-objective optimization based on the concept of 
Pareto optimum was proposed for identifying the best 
solution (i.e., individual or integrated model) for each 
modeled endpoint [21, 22].

Methods
Endpoints
The following endpoints were considered for modeling:

•	 LD50 single point estimates (continuous) expressed 
in mg/kgbw, and converted for modeling purposes 
in logarithm of mmol/kgbw.

•	 “Very toxic” (vT) binary classification: 
LD50 < 50 mg/kg (positive class) and LD50 ≥ 50 mg/
kg (negative class).

•	 “Non-toxic” (nT) binary classification: LD50 > 2000 mg/
kg (positive class) and LD50 ≤ 2000  mg/kg (negative 
class)

•	 EPA’s 4-category hazard classification [20]:
•	 Category I (LD50 ≤ 50 mg/kg) is the highest tox-

icity category. Category II (moderately toxic) 
includes chemicals with 50 < LD50 ≤ 500  mg/kg. 
Category III (slightly toxic) includes chemicals 
with 500 < LD50 ≤ 5000  mg/kg. Safe chemicals 
(LD50 > 5000 mg/kg) are included in Category IV.

•	 GHS 5-category hazard classification [23]:
•	 Category I includes chemicals with LD50 ≤ 5  mg/

kg. Category II includes chemicals with 
5 < LD50 ≤ 50 mg/kg. Category III includes chemicals 
with 50 < LD50 ≤ 300  mg/kg. Category IV includes 
chemicals with 300 < LD50 ≤ 2000  mg/kg). Category 
V includes chemicals with LD50 > 2000 mg/kg.

Datasets
NICEATM and NCCT compiled and curated a rat acute 
oral systemic toxicity (LD50) inventory with values 
expressed as mg/kg of body weight (bw). This dataset 
was split semi-randomly, i.e. ensuring equivalent cover-
age with respect to LD50 distribution (and correspond-
ing classes and categories for binary and categorical 
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endpoints), by the organizers of the project into a list of 
compounds to be used for modeling (75%; 8994 chemi-
cals) and validation (i.e., evaluation set, ES) (25%; 2895 
chemicals). All the data and project information were 
made available to the cheminformatics community by 
NICEATM and NCCT at https​://ntp.niehs​.nih.gov/
pubhe​alth/evala​tm/test-metho​d-evalu​ation​s/acute​-syste​
mic-tox/model​s/index​.html.

Project organizers retrieved acute toxicity data from 
several sources, i.e. Helmholtz Center for Environmen-
tal Research’s ChemProp (https​://www.ufz.de/index​
.php?en=34601​), the Joint Research Center’s Acutoxbase 
[24], the National Library of Medicine’s (NLM) Haz-
ardous Substance Data Bank (HSDB) [25], the OECD’s 
eChemPortal (https​://www.echem​porta​l.org/echem​porta​
l/index​.actio​n), NICEATM’s Pesticide Active Ingredi-
ents (PAI) (https​://ntp.niehs​.nih.gov/pubhe​alth/evala​tm/
index​.html) and NLM’s ChemIDPlus (https​://chem.nlm.
nih.gov/chemi​dplus​/). Over the 75% of chemical struc-
tures were retrieved from the EPA’s DSSTox database 
[26], while the remaining were crosschecked from litera-
ture publications. Details on the preparation of these data 
and the related variability is discussed in a separate paper 
by Kleinstreuer et  al. (in preparation). In this work, the 
list of 8994 chemicals proposed by NICEATM and NCCT 
for modeling was processed to create a training set (TS) 
for the development of models here presented, specific 
for each endpoint modeled. Project information reports 
the presence of 158 duplicate (Q)SAR-ready structures, 
mostly due to the presence of different counterions asso-
ciated to the main molecule (https​://ntp.niehs​.nih.gov/
iccva​m/metho​ds/acute​tox/model​/qna.pdf). Because (Q)
SAR approaches applied in this work do not deal with 
counterions, duplicated entries were aggregated. A single 
experimental value was assigned to each unique chemical 
structure (see Table  1 for details on the composition of 
the TSs). Details on the procedure applied to obtain the 
final version of datasets is included in Additional file 1.

The ES was initially imbedded into a larger predic-
tion set by NICEATM and NCCT to facilitate a blind 

evaluation of all the models that were developed by the 
various institutions during the initiative. It was subse-
quently released with all the information relative to the 
five endpoints (https​://ntp.niehs​.nih.gov/iccva​m/metho​
ds/acute​tox/model​/valid​ation​set.txt). While the TS 
used here were a result of a reworking of data provided 
for modeling, the ES was used as released for validating 
models presented here. Deduplication was performed by 
organizers of the project based only on CAS registration 
numbers. Consequently, a small degree of superimposi-
tion was observed between the TS and the ES due to the 
presence of different CAS numbers pointing to the same 
chemical structure. This overlap in chemistry is limited 
(i.e., about 8% of ES chemicals were also included in 
the TS) and it does not undermine statistical relevance 
of validation results. Table 1 summarizes, for each end-
point, the number of chemicals included in each toxicity 
category for TS and ES. In all cases, TS and ES showed 
a nearly analogous distribution of chemicals among the 
various classes.

The entire TS and ES are included in Additional file 2: 
Table S1 and Additional file 2: Table S2. The TS was ana-
lyzed by means of a principal component analysis based 
on CDK descriptors [27] implemented in KNIME analyt-
ical platform [31]. Eight chemicals identified as structural 
outliers based on score values on the first two principal 
components were removed from the TS.

Models development
Table  2 lists all the statistical methods applied for the 
development of models submitted to NICEATM for pre-
dicting rat oral acute toxicity. For each method, modelled 
endpoints were also specified. Below, technical details of 
each method are described.

Balanced random forest (BRF)/random forest in regression 
(rRF)
Data split For each compound, structural fingerprints 
were calculated using the Indigo toolkit implemented in 
KNIME (http://lifes​cienc​e.opens​ource​.epam.com/indig​

Table 1  Number of chemicals included in the TS and the ES for each toxicity class

Hazard categories for the two multi-class modeled endpoints (EPA and GHS classes) are sorted for decreasing toxicity, from 1 to 5. For the vT classification, class 1 
corresponds to the positive (i.e., very toxic) compounds, while for the nT endpoint class 1 corresponds to the negative (i.e., toxic) compounds

Training set (TS) Evaluation set (ES)

# Class 1 Class 2 Class 3 Class 4 Class 5 # Class 1 Class 2 Class 3 Class 4 Class 5

LD50 6279 – – – – – 2169 – – – – –

vT 8462 703 7759 – – – 2888 242 2646 – – –

nT 8402 4779 3623 – – – 2884 1651 1233 – – –

EPA 8259 703 1806 4142 1608 – 2859 242 643 1421 553 –

GHS 8331 165 538 1089 2916 3623 2879 58 184 391 1013 1233

https://ntp.niehs.nih.gov/pubhealth/evalatm/test-method-evaluations/acute-systemic-tox/models/index.html
https://ntp.niehs.nih.gov/pubhealth/evalatm/test-method-evaluations/acute-systemic-tox/models/index.html
https://ntp.niehs.nih.gov/pubhealth/evalatm/test-method-evaluations/acute-systemic-tox/models/index.html
https://www.ufz.de/index.php?en=34601
https://www.ufz.de/index.php?en=34601
https://www.echemportal.org/echemportal/index.action
https://www.echemportal.org/echemportal/index.action
https://ntp.niehs.nih.gov/pubhealth/evalatm/index.html
https://ntp.niehs.nih.gov/pubhealth/evalatm/index.html
https://chem.nlm.nih.gov/chemidplus/
https://chem.nlm.nih.gov/chemidplus/
https://ntp.niehs.nih.gov/iccvam/methods/acutetox/model/qna.pdf
https://ntp.niehs.nih.gov/iccvam/methods/acutetox/model/qna.pdf
https://ntp.niehs.nih.gov/iccvam/methods/acutetox/model/validationset.txt
https://ntp.niehs.nih.gov/iccvam/methods/acutetox/model/validationset.txt
http://lifescience.opensource.epam.com/indigo/
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o/). K-means clustering was applied, taking into account 
the structural information (codified by the fingerprints) 
and the experimental values of each chemical. TS was 
split into an internal training set (iTS) (80%) and an 
internal validation set (iVS) (20%) based on a stratified 
sampling of the obtained clusters, to ensure structural 
and activity analogy between the two datasets. The iTS 
was used for the development of QSAR models, while 
the iVS was used for the tuning of model and applicabil-
ity domain (AD) parameters. The number of chemicals 
included in iTS and iVS for each modeling endpoint is 
reported (“Results” section).

Algorithms Random Forest in regression (rRF) [28, 
29] was applied for the derivation of LD50 single 
point estimate prediction models. For the categorical 
ones (i.e., nT, vT, GHS and EPA), balanced random for-
est (BRF) was used. This technique is a combination of 
under-sampling and the ensemble idea that artificially 
alters the class distribution so that classes are repre-
sented equally in each tree [30]. This allowed handling 
of unbalanced distributions of chemicals among classes 
for some of the categorical endpoints. The number of 
trees for each model was varied among 50, 100 and 150, 
then the best solution was selected based on perfor-
mance on the iVS. All algorithms were implemented in 
the KNIME platform [31].

Descriptors Molecular descriptors were calculated for 
each compound using Dragon software [32]. Descrip-
tors for iTS compounds were pruned by constant and 
semi-constant values (i.e., standard deviation < 0.01), then 
those having at least one missing value were removed. In 
case of highly correlated pairs of descriptors (i.e., absolute 
pair correlation higher than 95%), only one was retained 
and the descriptor showing the highest pair correlation 
with all the other descriptors was removed. Descriptors 

were normalized in the range of 0–1, then the same nor-
malization scheme was applied to iVS descriptors.

Applicability domain Three approaches were applied 
for the definition of AD.

•	 Similarity A matrix containing pairwise Manhattan 
distances (based on Dragon descriptors used in the 
model) was calculated for iTS compounds. Chemi-
cals were sorted based on the mean distance with 
respect to their first k neighbors and then the value 
corresponding to a given percentile of the distribu-
tion of distances was used as a threshold (TD). Chem-
icals with mean distances above TD were excluded 
from the AD. The same procedure was repeated for 
iVS chemicals with respect to their neighbors in the 
iTS, for identifying compounds outside of AD. Val-
ues assigned to k were 1 and 5; values assigned to TD 
were those corresponding to the 100th, the 97.5th, 
the 95th and the 90th percentiles of the iTS distance 
distribution. This method was applied on both con-
tinuous (LD50) and classification models.

•	 Error model An “error model” predicts the uncer-
tainty of the predictions coming from a classical 
“activity model”. An error model was derived from 
the same iTS of the associated activity model, with 
the difference that the cross-validated absolute errors 
(previously generated by the activity model) rep-
resent the dependent variables while independent 
variables are represented by a series of AD metrics 
that reflect the accuracy of the predictions made by 
the activity model [33]. The RF algorithm was used 
for the error model derivation. iTS chemicals were 
sorted based on errors in prediction estimated by the 
error model, then the value corresponding to a given 
percentile of the distribution of predicted errors was 

Table 2  Summary of modeling methods used

For each method, the software, the descriptors used, the applicability domain definition and the modeled endpoints are specified. The methods listed are balanced 
random forest (BRF)/regression random forest (rRF); ab initio QSAR (aiQSAR); istKNN; hyper-parameter tuning random forest (HPT-RF); generalized linear model (GLM)

Method Software Descriptors Applicability domain Endpoints

LD50 point 
estimate

vT nT EPA GHS

BRF/rRF KNIME Dragon “Error” model
Confidence
Similarity

✓ ✓ ✓ ✓ ✓

aiQSAR R Dragon ADM ✓ ✓ ✓ ✓ ✓
istKNN istKNN Fingerprints + struc-

tural keys
Similarity/activity-based thresholds ✓

SARpy SARpy SAs Presence/absence of SAs ✓ ✓
HPT-RF R (Caret) Dragon Mirror matrix

Isolation forest
✓ ✓ ✓

GLM R (H2O) Dragon NA ✓

http://lifescience.opensource.epam.com/indigo/
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used as a threshold (TE). Chemicals exceeding TE 
were excluded from the AD. The same TE was applied 
on predicted errors calculated for iVS chemicals. For 
the present work, values assigned to TE corresponded 
to the 100th, the 90th, the 75th and the 65th percen-
tile of the iTS errors distribution. This method was 
applied only on the continuous LD50 point estimate 
models.

•	 Confidence The percentage of trees within the RF 
yielding the same prediction (i.e., confidence) was 
estimated. This method was applied only for classi-
fication models. For binary classification models (i.e., 
vT and nT) a confidence threshold (TC) was gradually 
incremented by 0.05, from a minimum of 0.60 to a 
maximum of 0.75. For multi-class models (i.e., EPA 
and GHS), the confidence threshold was incremented 
by 0.10 from a minimum of 0.30 to a maximum of 
0.70. Chemicals having confidence lower than this 
threshold were considered outside of the model AD.

For each model, the various parameters were evaluated 
in each possible combination, i.e. TD, k, TE for continu-
ous models, TD, k, TC for classification models. The best 
combination of parameters was selected based on the 
best trade-off in terms of coverage and performance on 
the iVS (see “Results” section).

aiQSAR
Data split The entire TS was used to derive aiQSAR 
models.

Algorithm aiQSAR methodology described by Vukovic 
et al. [34] was applied for development of regression and 
classification models. This method is based on the-runt-
ime derivation of local models specific to each compound 
(in this section referred to as the target compound). Each 
model is derived from a small local group of structurally 
similar compounds included in the TS. Figure 1 summa-
rizes the entire aiQSAR workflow.

Similar compounds were selected on the basis of 
Tanimoto distances computed from the comparison of 
“PubChem” (ftp://ftp.ncbi.nlm.nih.gov/pubch​em/speci​
ficat​ions/pubch​em_finge​rprin​ts.txt) and “Extended” fin-
gerprints [35] between the target compound and all the 
TS compounds, as implemented in the “rcdk” R pack-
age [36]. A minimum of 20 and a maximum of 50 com-
pounds were selected for the development of each model. 
First all compounds that are above the threshold value 
are selected (PubChem” similarity ≥ 0.80 and “Extended” 
similarity ≥ 0.70) Then, in case where the required num-
ber is not met, average ranks of compounds are consid-
ered to either add additional compounds, or to discard 
some of the selected ones.

Several mathematical models implemented in “caret” 
R package [37] were built from the local group of neigh-
bors and each model was used to predict the value of the 
target compound. The type and the number of models 
varied based on the endpoint (i.e., regression, binary clas-
sification, multi-class classification) and is listed in Fig. 1. 
Further details on the methods used are reported in Vuk-
ovic et al. [34].

Finally, predictions from all methods were combined 
into a single output value for each target compound. For 

Fig. 1  Workflow for aiQSAR-based model development (Adapted 
from [34])

ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt
ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt
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regression endpoints (i.e., LD50 point estimates), the final 
prediction was the average of predictions from individual 
methods, after discarding those more than 10% out of the 
range of experimental values of the TS. For classification 
endpoints (i.e., vT, nT, EPA and GHS), a majority vote 
approach was applied. In case of any tied votes, the class 
that is least represented in TS (out of the tied classes) was 
selected. In the present work, this always corresponded 
to the most toxic class in the tie being selected.

Descriptors Molecular descriptors were calculated 
using Dragon 7 software [32]. All available 1D and 2D 
descriptors (3839 overall) were considered for modeling 
purposes. Dragon descriptors with a missing value in any 
compound from the local group or in the target com-
pound were iteratively discarded before each local model 
generation, as well as descriptors that were constant and 
near-constant within the local group of neighbors.

Applicability domain Applicability domain measure 
(ADM) of the target compound was computed based on 
average values of “PubChem” and “Extended” fingerprint 
similarities between the target compound and its local 
group of neighbors. The more similar is the local group 
of neighbors, the higher is the ADM score, that ranges 
between 1 (out of AD) and 5 (in AD). For the present 
work, chemicals with ADM ≥ 2 (i.e., “PubChem” similar-
ity ≥ 0.60 and “Extended” similarity ≥ 0.30) were consid-
ered within the model’s AD.

istkNN
Data split The same data split described in "BRF/
rRF"  paragraph  ("Data split") was used for selecting 
model’s optimal parameters (see below). Once optimal 
parameters were selected, the global TS (iTS + iVS) was 
used to derive a new model that was validated on the ES.

Algorithm istkNN is a commercial tool [38] implement-
ing a modified k-Nearest Neighbors (kNN) algorithm. 
kNN estimates the outcome of a sample in a dataset on 
the basis of read-across accounting for the k most simi-
lar samples (neighbors) in the TS for which the outcomes 
are known [39, 40]. If the algorithm is applied for predict-
ing continuous endpoints (e.g., LD50 point estimates) the 
mean of the activities of neighbors is calculated [41].

Similarity Similarity between chemicals is described 
by an integrated similarity index (SI) ranging from 1 
(maximum similarity) to 0 (minimum similarity), result-
ing from a weighted combination of a binary fingerprint 
array and three non-binary structural keys, as follow:

where CD are structural keys with 35 constitutional 
descriptors (MW, nr of skeleton atoms, etc.), HE are 
structural keys with 11 hetero-atoms descriptors and FG 
are structural keys with 154 functional groups (specific 

SI = S(FP)0.4 ∗ S(CD)0.35 ∗ S(HE)0.1 ∗ S(FG)0.15

chemical moieties) as implemented in Dragon (v. 7.0.8, 
Kode srl, 2017) (Talete srl, Milano, Italy). FP are the 
extended fingerprints, which comprise Daylight notation 
(http://www.dayli​ght.com/dayht​ml/doc/theor​y/theor​
y.finge​r.html) and additional bits accounting for ring fea-
tures. FP similarity is calculated with Maxwell-Pilliner 
index while CD, HE, and FG similarities are calculated 
with Bray–Curtis index [42].

Applicability domain istKNN refines the classical kNN 
algorithm by setting additional conditions that a sam-
ple (i.e. chemical) should fulfill to be considered reliably 
predicted. The k nearest neighbors used for prediction 
should have a similarity value with the target greater than 
a given threshold (Tsim1), otherwise they are not used 
for prediction. If no neighbors match the threshold, the 
model does not provide a prediction for the target com-
pound. If only one neighbor matches the threshold, the 
similarity should be higher than a second stricter thresh-
old (Tsim2) to return a prediction (which is equal in this 
case to the experimental values of this selected neigh-
bor). If two or more neighbors fulfill the Tsim1, the range 
of experimental values of retained neighbors is consid-
ered. If the difference between the maximum and mini-
mum experimental values of neighbors is lower than a 
threshold (Tmin–max), the target is predicted, otherwise 
the model does not return predictions. To calculate the 
prediction when more than one neighbor is selected, 
the experimental values of the similar compounds can 
be weighted differently on the basis of their similarity 
with the target (by setting an enhancement factor that 
increases the weight to the most similar compounds in 
the prediction).

In the present work, a batch process was used to opti-
mize the settings of the five customizable parameters 
according to the following criteria: (a) number of neigh-
bors from 2 to 5; (b) Tsim1 from 0.70 to 0.90 (step = 0.50); 
Tsim2 = 0.85 or 0.90; (c) enhancement factor from 1 to 3; 
(d) Tmin-max from 1.0 to 2.0 (step = 0.50).

The iTS was used for the development of (Q)SAR mod-
els using all the possible combinations of the parameters 
above. A restricted pool of valid models was pre-selected 
based on leave-one-out cross-validation on the iTS, seek-
ing a good compromise in terms of coverage and per-
formance. The final model was the one among the pool 
with the best performance in external validation on the 
iVS with a coverage of at least 0.85 (arbitrary threshold). 
Finally, the selected parameter settings were used to 
derive a new model on the global TS (iTS + iVS) and to 
use it for the prediction of the ES.

SARpy
Data split The entire TS was used to derive SARpy 
models.

http://www.daylight.com/dayhtml/doc/theory/theory.finger.html
http://www.daylight.com/dayhtml/doc/theory/theory.finger.html
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Algorithm The freely available SARpy software (https​://
www.vegah​ub.eu/portf​olio-item/sarpy​/) was used to build 
classification models for nT and vT classifications.

Given a TS of molecular structures described by 
SMILES, SARpy applies a recursive algorithm consid-
ering every combination of bond breakages working 
directly on the SMILES string. The software generates 
every structural fragment included in the TS that is then 
encoded into SMARTS (www.dayli​ght.com/dayht​ml/
doc/theor​y/).

Each substructure is validated as a potential structural 
alert (SA) by verifying the existing correlation between 
the incidence of a particular molecular fragment and the 
class of activity of the molecules containing it. In this 
way, a reduced ruleset of relevant SAs is defined. Each 
SA was associated with an activity label (e.g., positive or 
negative) and a likelihood ratio, estimating the statistical 
relevance of the SA [43, 44].

Applicability domain If a chemical  does not contain 
any  fragment present in the rule set, it is not predicted 
and is considered outside of the model AD.

Random forest with hyper parameter tuning (HPT‑RF)
Data split The whole TS was used to derive HPT-RF 
models.

Algorithm “caret” [37] and “ranger” [45] R packages 
were used to develop regression (LD50) and multi-cate-
gory classification (EPA and GHS) RF models [28]. Hyper-
parameter tuning (HPT) research was performed during 
the RF derivation, in order to select an “optimal” model 
across various parameters. Selection was made by evalu-
ating the effect of model tuning on performance (i.e., 
accuracy) in internal validation (i.e., bootstrap). Three 
parameters were tuned by grid search: (1) mtry (number 
of randomly selected descriptors used in each tree of the 
RF), (2) splitrule (the rule used to choose descriptors for 
a single tree, i.e. “gini” or “extratrees” for classification; 
“variance” or “extratrees” for regression), (3) min.node.
size (minimal node size of trees). The number of trees was 
equal to 500. The reader is referred to the user’s guides of 
the above-indicated packages for further details.

A first model run served to evaluate the presence of 
response outliers within the TS. The isolation forest [46] 
method for anomalies isolation as implemented in the “iso-
for” R package was used to identify outliers. In addition, 
chemicals were flagged as outliers if they were character-
ized by a high variance and high error among iterations of 
bootstrap internal validation (100 iterations). In a second 
run, outliers were excluded from model’s derivation.

Descriptors Calculation, pruning and normalization 
of descriptors were the same as in "rRF/BRF" paragraph 
("Descriptors").

Applicability domain Two approaches were applied for 
the definition of models AD:

•	 Similarity PubChem Fingerprints (ftp://ftp.ncbi.nlm.
nih.gov/pubch​em/speci​ficat​ions/pubch​em_finge​
rprin​ts.txt) were calculated for each compound start-
ing from SMILES using the “rcdk” R package. Fin-
gerprint-based similarity (Tanimoto) between a tar-
get compound and all the compounds in the TS was 
computed. If the mean similarity with the three most 
similar compounds among those flagged as outliers 
was higher than the similarity with three most simi-
lar compound from the TS cleaned from outliers, the 
compound was considered out of AD.

•	 “Dummy” matrix Descriptors of TS chemicals were 
randomly permuted (vertical permutation) to create 
a mirror TS. The shuffled TS was merged with the 
original one. Samples of the original TS were flagged 
as “real”, while those of the mirror TS were flagged as 
“dummy”. A RF classification model was built to dis-
tinguish real from dummy samples. External chemi-
cals classified as “dummy” were considered outside of 
the model’s AD [47, 48].

Generalized linear model (GLM)
Data split The same data split described in "rRF/
BRF" paragraph ("Data split")  was used. The original iTS 
for the nT classification was further split by 20% of the 
iTS as an internal calibration set (iCS, 1330 chemicals) 
in order to evaluate the accuracy of the model during the 
building process. The iVS was used for validating the final 
model.

Algorithm The model was built using the H2O 3.16.0.3 
(https​://www.h2o.ai/downl​oad/) package for GLM in R v. 
3.4.0 (https​://www.R-proje​ct.org).

Logistic regression (LR) is used for binary classification 
problems when the response is a categorical variable with 
two levels. In this case, only the nT endpoint was mod-
elled. This approach was not applied to the vT endpoint 
due to a strong bias arising from few chemicals having 
a vT designation, and the inadequacy of the method in 
modeling highly unbalanced datasets. LR-GLM model 
was fitted by finding a set of parameters that maximizes 
the probability of an observation belonging to its experi-
mental category. Parameter tuning was performed on the 
iCS. Penalties were also introduced to the model build-
ing process to avoid over-fitting, reducing variance of the 
prediction error and handling correlated predictors. Pen-
alties (elastic method) were controlled by parameters α 
and λ that were set to 0.09 and 0.02, respectively. A more 
in-depth description of the algorithm is reported by [49].

https://www.vegahub.eu/portfolio-item/sarpy/
https://www.vegahub.eu/portfolio-item/sarpy/
http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt
ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt
ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt
https://www.h2o.ai/download/
https://www.R-project.org
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Descriptors Calculation, pruning and normalization of 
descriptors were performed as in "rRF/BRF"  paragraph 
("Descriptors").

Applicability domain AD was not implemented for this 
model.

Integrated modeling
Integrated modeling was applied to all five endpoints. 
The approach was based on the intuitive assumption that 
taking into account predictions from multiple models 
could compensate for the limitations of single models. 
Different approaches were used for regression and clas-
sification endpoints:

•	 Integrated model for predicting LD50 point estimates 
was obtained by averaging predictions of the four indi-
vidual models (i.e., rRF, aiQSAR, istkNN, HPT-RF). 
Only predictions within the AD of each model were 
considered for integration. The integrated model’s AD 
was implemented by applying the concept of “inte-
grated prediction fraction” (PF) described by [50]. In 
particular, the number of models returning a prediction 
in AD and contributing to the final integrated predic-
tion for a given sample was considered. The higher was 
the number of used models, the more reliable the inte-
grated prediction. A threshold was set based on the PF 
and then integrated predictions with a PF lower than 
the threshold were considered out of the integrated AD.

•	 Integrated models for categorical endpoints (vT, nT, 
EPA, GHS) were obtained by using a majority voting 
approach. Similarly to above, a consensus score (CS) 
was used as an index of prediction reliability. In this 
case, CS was calculated as the number of single mod-
els returning the same prediction as the integrated 
one, minus the number of models returning a predic-
tion different from the integrated one. Only predic-
tions within the AD of each model were considered for 
integration. For example, three out of four nT models 
returned predictions for a given sample, two of them 
being positive and one negative. In this case, the inte-
grated prediction for the sample was “positive” with a 
CS of 1. No predictions were returned in case of ties.

For all the endpoints, the variation of integrated perfor-
mance with respect to the PF/CS was evaluated.

Results
Model parameterization
Table 3 reports final settings for each model developed with 
the rRF and BRF method.

For the istkNN approach, the selected model was 
characterized by the use of 3 neighbors maximum, 
Tsim1 = 0.80, Tsim2 = 0.85, enhancement factor = 3 and 
Tmin-max = 2.0.

For the SARpy model, 349 fragments were identified 
for the vT endpoint (64 for the vT class, 285 for the not 
vT class), while 446 fragments were identified for the nT 
endpoint (228 for the nT class, 218 for the class of toxic 
compounds). The list of fragments encoded as SMARTS 
are reported in Additional file  3: Table  S3a (vT model) 
and Table S3b (nT model).

Table  4 indicates the values for the three parameters 
mtry, splitrule and min_node_size of the HPT-RF model.

Statistical performance
External validation performance represents the real proof 
of the predictive power of (Q)SAR models. In this work, 
results on the common ES allowed a fair comparison of 
the models’ predictivity. Table 5 shows the performance 
of the LD50 continuous models on the ES, while Table 6 
shows the performance of classification models. 

Internal validation is not discussed in the present arti-
cle. The interested reader is referred to Additional file 1: 
Tables S4 and S5 for internal performance of each model.

Table 3  rRF and BRF settings

For each model, the size of the internal training set (iTS) and internal validation set (iVS), the number of descriptors (#descrs), the number of trees (#trees) and the 
tuned parameters for AD definition are indicated

Endpoint Model iTS iVS #descrs #trees k TC TD TE

LD50 point estimate rRF 5028 1251 1352 150 1 – 90th 1.00

nT BRF 6722 1680 1247 150 1 0.65 100th –

vT BRF 6772 1690 1250 100 1 0.65 95th –

EPA BRF 6607 1652 1243 100 1 0.40 100th –

GHS BRF 6663 1668 1244 100 5 0.30 90th –

Table 4  HPT-RF settings

For each model, the number of descriptors in each tree (mtry), the rule for 
descriptor selection for single trees (splitrule) and the minimal node size of trees 
(min.node.size) are indicated

Endpoint mtry splitrule min_
nodee.
size

LD50 748 Extratrees 5

EPA 38 Extratrees 1

GHS 38 Extratrees 1
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Predictions of all models on the TS and ES are included 
in Additional file 2: Tables S1 and S2.

All continuous logLD50 (mmol/kg) predictive models 
showed good predictivity on ES. In particular, aiQSAR, 
istkNN and HPT-RF models showed a similar behav-
ior with an R2 higher than 0.60 and RMSE near 0.54. On 
this basis, the istkNN method was particularly appeal-
ing for its intuitiveness and simplicity, compared with 
other more computationally-demanding methods. The 
rRF model was slightly less predictive, but with a higher 
percentage of predictions in AD (%AD) (i.e., 0.900) com-
pared to other models (Table 5).

As far as classification models, Matthew correlation 
coefficient (MCC) [51] and balanced accuracy (BA) met-
rics were used for an overall estimation of classification 
performance for their ability to deal with unbalanced 
classes. Cooper statistics [52] were also calculated. For 
multi-category classifiers (EPA and GHS), the general-
ized formula of MCC reported by Ballabio et al. [53] was 
used, while BA was obtained as arithmetic mean of aver-
aged sensitivities and specificities calculated for each 
separate category.

With respect to binary classification models, all the 
models showed good predictivity on the ES, with BAs 
close or higher than 0.80 and MCCs often higher than 
0.50 (i.e., BRF and aiQSAR). In both cases, the best tech-
niques was BRF, that returned BAs in external validation 
of 0.839 (for nT) and 0.880 (for vT), and MCCs of 0.674 
(for nT) and 0.585 (for vT), despite a slightly lower %AD 
(i.e. 0.728) with respect to other methods (Table 6). This 
confirmed our previous experience [54] on the suitability 
of this technique to effectively handle highly unbalanced 
datasets.

As far as multi-categorical endpoints, EPA predictive 
models showed close performance across algorithms, with 
MCCs higher than 0.40 and BAs close to 0.73 in all cases. 
The HPT-RF method showed high performance, but at the 
cost of a slight loss in coverage with respect of other meth-
ods. aiQSAR was close in terms of performance, but with a 
gain in %AD (i.e., 0.891 compared to 0.763) (Table 6).

For GHS models, aiQSAR and HPT-RF performed 
better than BRF. However, coverage for GHS mod-
els was disappointing, being close to or lower than 0.50 
(Table 6). This is reasonable due to the challenging nature 
of the GHS endpoint, characterized by a high number of 
(unbalanced) categories (n = 5) (Table 1).

Integrated models evaluation
Integrated modeling was applied in order to improve pre-
dictions of single models. Table 7 shows the performance 
on ES of integrated models obtained by averaging single 
LD50 predictions, while Fig. 2 compared the experimen-
tal logLD50 (mmol/kgbw) values with the predictions 
returned by the integrated model. 

Table 5  External performance of  single models 
for predicting single point logLD50 (mmol/kg)

For each model, the R2, the mean absolute error (MAE), the root-mean squared 
error (RMSE), the number (#AD) and the percentage (%AD) of predictions in AD 
are reported. The best values for each metric are italicized

Model R2 MAE RMSE #AD %AD

rRF 0.590 0.432 0.585 1966 0.907

aiQSAR 0.651 0.390 0.541 1843 0.850

istKNN 0.628 0.387 0.545 1917 0.884

HPT-RF 0.620 0.398 0.541 1885 0.869

Table 6  External performance of single models for predicting classification endpoints (vT, nT, EPA, GHS)

For each model, the sensitivity (SEN), the specificity (SPE), the balanced accuracy (BA), the Matthew’s correlation coefficient (MCC), the number (#AD) and the 
percentage (%AD) of predictions in AD are reported. For multi-category endpoints (EPA and GHS), SEN and SPE are the average of values computed separately for 
each class, while BA is the arithmetic mean of the average SEN and SPE. The best values for each metric are italicized

Model SEN SPE MCC BA #AD %AD

nT BRF 0.830 0.848 0.674 0.839 2100 0.728

aiQSAR 0.723 0.829 0.556 0.776 2567 0.890

SARpy 0.772 0.724 0.492 0.748 2488 0.863

GLM 0.779 0.650 0.425 0.714 2884 1.000

vT BRF 0.856 0.903 0.585 0.880 2103 0.728

aiQSAR 0.682 0.963 0.619 0.822 2572 0.891

SARpy 0.710 0.896 0.467 0.803 2613 0.905

EPA BRF 0.614 0.851 0.405 0.733 2301 0.805

aiQSAR 0.603 0.857 0.450 0.730 2547 0.891

HPT-RF 0.616 0.860 0.462 0.738 2180 0.763

GHS BRF 0.539 0.872 0.342 0.705 1410 0.490

aiQSAR 0.568 0.895 0.469 0.731 1475 0.512

HPT-RF 0.569 0.897 0.476 0.733 1291 0.448
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Table  8 shows performance on ES of integrated clas-
sification models. As expected, the increase of the 
PF/CS threshold to exclude predictions from the AD 
always paired with an increased performance, although 
at the cost of a reduced percentage of predicted com-
pounds. This was especially true for classification when 
a complete agreement among integrated predictions was 
required (i.e., maximum CS value) and the number of 
categories was higher (e.g., GHS integrated models, hav-
ing %AD = 0.214 for CS = 3). Internal performance on 
the TS of integrated models is not discussed in the manu-
script and is reported in Additional file 1: Tables S6, S7).

The concept of “Pareto optimum” was applied to retro-
spectively confirm the improvement of consensus strategy 
with respect of single models, keeping into account both 
statistical performance and %AD. The approach allows 
solving of multi-objective optimization problems, in 
which no single solution exists that simultaneously opti-
mizes multiple quality criteria. A solution is called “non-
dominated” (i.e., Pareto optimal) if no other solutions 
exist for which an evaluation function can be improved 
without degrading one of the other functions [21, 22].

Quality functions used in this case were performance 
in external prediction (i.e., RMSE for regression, BA for 
classification) and %AD on the ES. Figure  3 graphically 
shows the set of optimal solutions for each endpoint rep-
resenting the optimal trade-offs between the two func-
tions. Such solutions constitute a Pareto front [21].

As shown in Fig.  3, integrated models always repre-
sented the optimal Pareto solutions for each endpoint, 
confirming the effectiveness of the integrated approach. 
Conversely, it was never possible to designate the best 

Table 7  External performance of  the  continuous 
integrated model for  predicting single point logLD50 
(mmol/kg)

The R2, the mean absolute error (MAE), the root-mean squared error (RMSE), the 
number (#AD) and the percentage (%AD) of predictions in AD are reported, with 
respect to the PF threshold for defining predictions in AD

R2 MAE RMSE #AD %AD PF

0.632 0.397 0.549 2152 0.992 0.25

0.646 0.390 0.535 2085 0.961 0.50

0.675 0.373 0.512 1900 0.876 0.75

0.716 0.348 0.477 1474 0.680 1.00

Fig. 2  Comparison of experimental and predicted (integrated) 
logLD50 (mmol/kgbw) for ES chemicals. Darkest circles indicate 
samples with a high prediction fraction (PF), while lightest circles 
indicate samples with lower PF. Dashed line represents the case of 
ideal correlation, while dotted lines delimit samples with an absolute 
error in prediction lower than 1.00 log unit

Table 8  External performance of continuous models for predicting classification endpoints (vT, nT, EPA, GHS)

For each model, the sensitivity (SEN), the specificity (SPE), the balanced accuracy (BA), the Matthew’s correlation coefficient (MCC) the number (#AD) and the 
percentage (%AD) of predictions in AD are reported, with respect to the CS threshold for defining predictions in AD. For multi-category endpoints (EPA and GHS), SEN 
and SPE are the average of sensitivities/specificities computed separately for each class, while BA is the arithmetic mean of the average SEN and SPE

SEN SPE MCC BA #AD %AD CS

nT 0.794 0.796 0.587 0.795 2665 0.924 1

0.840 0.841 0.677 0.840 2182 0.757 2

0.878 0.858 0.733 0.868 1704 0.591 3

0.913 0.883 0.794 0.898 1222 0.424 4

vT 0.743 0.938 0.577 0.840 2742 0.949 1

0.796 0.976 0.737 0.886 2316 0.802 2

0.890 0.978 0.820 0.934 1556 0.539 3

EPA 0.602 0.856 0.439 0.729 2653 0.928 1

0.701 0.885 0.550 0.793 1731 0.605 2

0.739 0.898 0.600 0.819 1200 0.420 3

GHS 0.567 0.894 0.461 0.731 1561 0.542 1

0.644 0.911 0.541 0.777 908 0.315 2

0.676 0.916 0.573 0.796 617 0.214 3
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integrated model among those obtained varying the PF/
CS value. Indeed, the increase of the threshold always 
resulted an increased performance, but at the cost of a 
systematic reduction of %AD.

For LD50 point estimate models, the integrated model 
with PF = 0.75 returned a coverage (i.e., 90%) analogous 
to best individual models, but with a relevant gain in 
performance (i.e., RMSE = 0.512 with respect of a mean 
RMSE = 0.542 for the best three individual models) 
(Tables 5 and 7).

For vT and nT endpoints, the BRF models were the 
closest to the Pareto front, however both solutions are 
dominated by the related integrated model with CS = 2.

As for multi-categorical endpoints, the aiQSARs were 
both close to the Pareto front and in particular to the 

integrated model with CS = 1. In this case, aiQSAR and 
integrated models have comparable performance, with 
a BA close to 0.730 for both endpoints. In both cases, 
integrated models showed a gain in %AD with respect to 
aiQSAR models, i.e. 3.7% additional predicted chemicals 
for the EPA model and 3.0% for GHS.

Discussion
This work describes the modeling efforts our research 
group contributed in the development of new (Q)SAR 
models for predicting five endpoints (one continuous, 
four classification) related to acute oral toxicity in rats, as 
a result of our participation in the collaborative project 
launched by NICEATM and NCCT [19]. This endpoint is 
of utmost importance to several regulatory frameworks, 
being currently the basis for the toxicological classifica-
tion of chemicals [4].

To date, the recent literature reports only a small num-
ber of successful attempts in modeling oral rat acute tox-
icity [3, 9]. The small number of models available can be 
explained by the nature of the endpoint and the lack of 
curated datasets prior to this effort. Indeed, compared 
with other widely modeled endpoints (e.g., (eco)toxicity) 
the modeling of mammalian toxicity is challenging, rep-
resenting the sum of a plethora of toxicological mecha-
nisms, each involving different biological pathways and 
molecular events concurring to the final effect [3, 55].

Individual (Q)SAR methods often showed inherent 
limitations in developing single models able to handle 
different mechanism of action, even more in case of a 
lack of complete understanding of some of the biologi-
cal mechanisms contributing to the overall effect (e.g., 
death) [6, 41]. This issue can, however, be compensated 
with large enough datasets that adequately represent the 
diversity of the chemical universe.

An additional obstacle is often represented by the lack of 
reliable toxicity data in terms of quality, source of experi-
mental data and organisms used [56]. The involvement of 
absorption, distribution, bioaccumulation, metabolism 
and excretion aspects further contributes to making the 
whole scenario even more complex and challenging [3, 56].

As a consequence, (Q)SAR models for this endpoint so 
far have been largely limited to small datasets restricted 
to a well-defined class of chemicals while global models 
are few and, often, not satisfactory in terms of predictive 
power [3, 9].

Despite this, the demand of in silico tools for such 
complex in vivo endpoints and (Q)SAR models continues 
to grow, due to objective resource and ethical limitations 
related to the execution of in vivo tests for a high number 
of chemicals. In this regard, the need of developing global 
models addressing a common endpoint such as acute 
toxicity have arisen as a primary need [3].

Fig. 3  Overview of Pareto optimal solutions for regression and 
classification models. a Performance of continuous LD50 models is 
described as root-mean squared error (RMSE) versus percentage of 
compounds in the AD (%AD). b Performance of classification (nT, vT, 
EPA, GHS) models are described as balanced accuracy (BA) versus 
percentage of compounds in the AD (%AD). All the parameters 
refer to the ES. Models in the bottom-left part of the plots are 
characterized by the best compromise in terms of performance 
and coverage, with dotted lines representing the Pareto front for a 
given endpoint. White indicators are single models (R = rRF; B = BRF; 
H = HPT-RF; K = istkNN; S = SARpy; Q = aiQSAR), while black indicators 
are integrated models, flagged with the corresponding PF (for 
regression) or CS (for classification) threshold
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Within the project of NICEATM and EPA’s NCCT 
Acute Toxicity Modeling Consortium, the availability of a 
large and high-quality rat oral acute toxicity database and 
the involvement of the entire scientific community repre-
sented an unprecedented chance to improve the current 
state of the art on the in silico modeling of this endpoint. 
To the best of our knowledge, this is the largest curated 
dataset of heterogeneous chemicals made available so far 
for the development of new (Q)SARs.

Integrated modeling was also applied in order to 
improve predictions of single models. As demonstrated 
previously and in the current work, integrated models 
had the highest external prediction power compared to 
any individual model used in the integrated prediction 
[57, 58, 59].

This is particularly true when the individual models 
have been developed using different techniques, have 
ADs differently defined and showed different behaviors 
based on the structural and activity profile of predicted 
chemicals. For example, an inspection of correct predic-
tive rates that classification models have on specific cat-
egories of toxicity showed that some methods performed 
better on certain classes (e.g. more toxic or less toxic 
compounds) than others (for detailed statistics see Addi-
tional file 1: Tables S8–S11).

In this regard, the integrated method can compensate 
for and correct the limitations of individual techniques, 
as well as afford greater chemical space coverage [57, 59].

Given the improvement of statistical performance, the 
use of PF/CS as a way to define AD of integrated mod-
els proved to be particularly suitable for identifying pre-
dictions likely to be wrong. Another advantage of PF/
CS metrics is that these values can be applied to assign 
a degree of reliability to the prediction. Therefore, this 
metric can work as an indicator of the likelihood that 
a compound is within the AD. This meets the need of 
accounting for the fuzzy nature of boundaries of AD 
[60], instead of considering the AD assessment as a yes/
no issue (e.g., a compound with an intermediate PF value 
can be considered questionable instead of out of AD). 
This is confirmed by an inspection of integrated LD50 
models’ performance limited to a given PF value. As 

shown in Table 9, statistical performance on the ES recal-
culated with respect to a given PF value clearly showed 
that samples characterized by lower PFs also showed 
an overall higher error. Looking at external predictions 
(i.e., ES), samples with PF = 1.00 have the lower RMSE. 
On the other hand, the value dramatically increases con-
sidering samples with lower PFs, to a maximum value of 
0.865 in case of PF = 0.25. The effectiveness of the PF/CS 
approach is further reinforced by looking at the percent-
age of samples with a high prediction error (i.e., equal or 
higher than 1.00 log unit) for each PF value, that is about 
20% of the total number of samples with PF = 0.25 and 
only 4.3% for PF = 1.00 (Table 9).

Machine learning methods we used (e.g., RFs) proved 
to be valid in terms of predictive performance, but a 
mechanistic interpretation of these models is often more 
difficult than classical linear models. Indeed they can be 
based on thousands of different molecular descriptors 
and the relationship existing between the endpoint and 
each descriptor is often a complex, non-linear one that is 
only implicitly included in the model itself. With this in 
mind, we provided an analysis of most relevant features 
used in the descriptor-based global models here pre-
sented (rRF/BRF, HPT-RF, GLM). Models generated with 
aiQSAR and istKNN were not considered in this analysis 
as they are local models not capable of identifying fea-
tures associated with the global trend of acute toxicity. In 
addition, istKNN is based on the similarity concept only 
and not on descriptors.

The top twenty Dragon descriptors for each of the 
above-cited models were listed in Additional file  1: 
Table  S12. Details on how the importance of descrip-
tors was determined for each model were included in the 
same Table. Descriptors belonging to the 2D Atom Pairs 
category (binary, frequency or weighted topological atom 
pairs) were the most frequent (79 out of 180 descrip-
tors). They were followed by 2D autocorrelation (16), 
CATS2D (14), functional group counts (11) and P_VSA-
like descriptors (11). P_VSA_s_1 (P_VSA-like on I-state, 
bin 1) was also the single most frequent descriptor (it was 
included in four out of nine models considered). P_VSA 
descriptors are related to van der Waals surface area of 

Table 9  External performance of the continuous integrated model for separate PFs

The R2, the mean absolute error (MAE), the root-mean squared error (RMSE), the number (#) and the percentage (%) of predictions with a given prediction fraction 
(PF) are reported. In addition, the percentage of samples with a given PF value and an absolute error in prediction equal to or greater than 1.00 log unit with respect 
of the total number of samples with the same PF (%AE ≥ 1) are reported

R2 MAE RMSE # % %AE ≥ 1 PF

0.265 0.620 0.865 67 0.031 0.209 0.25

0.391 0.568 0.736 185 0.085 0.151 0.50

0.540 0.458 0.616 426 0.196 0.085 0.75

0.716 0.348 0.477 1474 0.680 0.043 1.00
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chemicals and, indirectly, with their size and lipophilicity. 
Low LD50 compounds in the TS were characterized by 
higher values of P_VSA descriptors, suggesting a role of 
molecular size and lipophilicity in the offset of acute tox-
icity (e.g., in absorption/excretion and bioaccumulation 
of chemicals in tissues).

Looking at 2D Atom Pairs descriptors, those refer-
ring to the presence of phosphorus (31), carbon (26), 
fluorine, nitrogen and sulfur (19) atoms were those more 
frequent. In particular, chemicals having a higher num-
ber of phosphorus, fluorine and sulfur atoms had lower 
LD50 values with respect to the mean of the distribution 
of values for the TS. The number of phosphorus (nP) was 
also one of the single most frequent descriptors, that was 
found in HPT-RF models for EPA and GHS and in BRF/
rRF models for single point LD50 and vT classification. 
Binary/frequency phosphorous-based 2D Autocorrela-
tion descriptors (B01[O-P], B04[C-P] and F02[C-P]) also 
appeared in multiple models (three models each).

Functional group counts are easier to be interpreted 
with respect to other theoretical descriptors, because 
they describe the presence of well-defined structural 
motif. For example, high values of nOHp (number of 
primary alcohols) were characteristic of low-toxicity 
chemicals. High numbers of hydroxyls flagged for high 
solubility of chemicals that influence the excretion rate, 
the capability to cross biological membranes and accu-
mulate in tissues to exert toxicity. The presence of pri-
mary hydroxyls is important for phase II metabolism 
(conjugations) that contribute to detoxification of chemi-
cals [17]. On the contrary, high number of aliphatic 
tertiary alcohols (nOHt) and aliphatic tertiary amines 
(nRNR2) was observed in high-toxicity compounds. It 
is possible that high counts of tertiary groups flags for 
bulky, lipophilic molecules that are easily to accumulate 
in the organism. Conversely, beta-Lactams, sulphonic 
and sulphuric acids, that are more hydrophilic, are only 
presents in safest toxicity categories.

Fragments identified by the SARpy model for vT class 
with LR = inf were evaluated too. Compared to the func-
tional groups they can include larger fragments. The 
chemical moieties spotted with these fragments are 
halogenated 2-trifluoromethyl benzimidazoles, dioxins, 
phosphonothioates, organothiophosphates (including 
organothiophosphate aliphatic amides). They refer espe-
cially to chemical classes well represented among pesti-
cides or former pesticides active ingredients.

Conclusions
In the present study, a series of computational mod-
els were developed as part of the NICEATM and EPA’s 
NCCT collaborative project, for the prediction of five 

regulatory relevant endpoints describing rat acute oral 
toxicity (LD50). A series of different (Q)SAR methods 
were applied and the obtained models were validated 
on a large external dataset to assess their predictivity. 
Briefly, no single methods proved to be the best for all 
the endpoints, despite some of them constantly returning 
highly satisfactory predictive performance. In particu-
lar, results showed that some machine learning methods 
(e.g. RFs) were especially effective in modeling this kind 
of composite endpoint. These findings support the fact 
that machine learning approaches have often been indi-
cated as promising tools in the field of computational 
toxicology [61, 62], and that they are able to handle mul-
tiple mechanisms of actions better than classical linear 
approaches [63, 64].

A review from Gonella-Diaza et  al. [15] recently pro-
posed an evaluation of the performance of existing 
models predicting LD50 implemented in a series of com-
putational platforms. It was shown that only a few models 
were able to deliver acceptable predictive performance. 
Indeed, the best models among those evaluated returned 
RMSE values in external validation and within AD never 
lower than 0.55 for regression, while accuracy values for 
the five-class GHS classification ranged between 0.45 and 
0.56. The models presented here showed robust perfor-
mance in external validation, with RMSE values close to 
0.50 for integrated models and BAs exceeding 0.80. In 
this regard, the models presented here can be easily con-
sidered an improvement on the current state-of-the-art 
for in silico modeling of this endpoint.

Another important outcome of this study is that inte-
grated methods always returned improved performance 
with respect to single models. This confirms, as has 
already been widely reported, that the integration of 
multiple strategies and the application of a weight-of-evi-
dence approach solves the limitations inherent to single 
methods and increases the confidence in the final toxico-
logical prediction.

Several other groups were involved in NICEATM/
NCCT collaborative project, and other (Q)SAR models 
were developed and validated starting from the same data 
used here. For the ease of example, Alberga et  al. [65] 
developed a multi-fingerprints similarity approach for 
predicting the five relevant toxicology endpoints related 
to the acute oral systemic toxicity. The approach inte-
grated the results coming from a similarity search based 
on 19 different fingerprint definitions to return a con-
sensus prediction value. The algorithm also accounted 
for toxicity cliffs, i.e. large gaps in LD50 values existing 
between two highly similar chemicals. Ballabio et  al. 
[55] proposed a Bayesian consensus approach integrat-
ing three different mathematical methods for modeling 
the nT and vT classification endpoints, i.e., N-Nearest 
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Neighbors, Binned Nearest Neighbors and Naïve Bayes 
classifier. Extended connectivity fingerprints were used 
to describe the structure of chemicals. Both papers also 
defined the AD of (Q)SAR models with the aim of iden-
tifying the most reliable predictions. External validation 
results reported by authors were made on the same ES 
used in this work and were summarized in Table 10.

Leveraging the collective expertise of the entire sci-
entific community in a collaborative effort was the 
main aim of the NICEATM/NCCT initiative. Given the 
encouraging results of this first exercise, as well as the 
comparable results in validation of other research groups, 
authors strongly believe that the development of new, 
comprehensive integrated models will represent a fur-
ther improvement to the already satisfactory results here 
presented. Indeed, the combination of several methods 
will mitigate the  weaknesses of single models, towards 
a better collective consensus approach, as well as an 
enlarged chemical domain. Finally, all the predictions will 
be hosted on the EPA’s Chemistry Dashboard and made 
freely available to the entire scientific community.
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